Design and maintenance of pipe networks transporting hydrogen pure or blended with natural gas

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Aug 31, 2019
Guy Pluvinage J. Capelle

Abstract

Steel is subject to hydrogen embrittlement (HE). This problem is relatively accurate for pipes transporting hydrogen pure or blended with natural gas. Therefore this problem has to be taken into account for the design and maintenance of pipe networks for this kind of transport. Design needs to modify the design factor for computing maximum working pressure in this case. Defect harmfulness needs specific tools for each type of defect which are the same as for pipe transporting natural gas, but the admissibility criterion is modified when transporting hydrogen. For cracking, harmfulness is determined with a failure assessment diagram with steel fracture toughness under HE. For defect correction, the estimated repair factor (ERF) is changing due to modification of the flow stress. For gouging, the Constraint Modified Failure Assessment Diagram (CMFAD) incorporates the actual material failure master curve. For dents, the criterion proposed by Oyane et al take into account the major reduction of elongation at failure. The influence of HE on fatigue endurance is seen through the fatigue assessment diagram(fAD). Discussion is based on recategorisation of defect, assessment tools, embrittlement and fatigue life duration.

How to Cite

1.
Pluvinage G, Capelle J. Design and maintenance of pipe networks transporting hydrogen pure or blended with natural gas. PST [Internet]. 2019Aug.31 [cited 2019Nov.12];3(1):30-5. Available from: https://pipeline-science.com/index.php/PST/article/view/100

Downloads

Download data is not yet available.
Abstract 69 | PDF file Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

Hydrogen Embrittlement, Pipe Steels, Defect Assessment

References
[1] W. H. Johnson: Proceedings of the Royal Society of London, 23:168–179, (1875).
[2] J. Capelle, I. Dmytrakh, G. Pluvinage. “Electrochemical hydrogen absorption of API X52 steel and its effect on local fracture emanating from notches.” Journal of Structural integrity and Life, Vol.9, N°1: 3–8 (2009).
[3] API 579-1 / ASME FFS-1 2007 Fitness-Pour-Service 7-13 section 9, (2009).
[4] Thompson A.W. “Stress Corrosion Cracking and Hydrogen Embrittlement.” Metallurgical Treatises; Metallurgical Society: 589–601; P. A. (1985).
[5] NewmanJ.C, Raju I.S, “Stress intensity factor for internal and external surface cracks in cylindrical pressure vessels.” J of Pressure Vessels Technology, vol 104, Nov, (1982).
[6] SINTAP: Structural Integrity Assessment Procedure, Final Report E-U project BE95-1462 Brite Euram Programme Brussels, (1999).
[7] Harrisson R.P , Milne I and Loosmore K. “Assessment of the integrity of structures containing defects.” Central Electricity Generating Board Report R/H R6 Revision 1, leatherhzead, surrey, UK, (1977).
[8] RCC-MRx 2015 - EN Design and Construction Rules for mechanical components of nuclear installations: high-temperature, research and fusion reactors, AFCEN, Paris (2015).
[9] L. Briottet , R. Batisse, G. de Dinechin, P. Langlois, L. Thiers. “Recommendations on X80 steel for the design of hydrogen gas transmission pipelines.” International Journal o Hydrogen Energy,37: 9423–9430, ( 2012).
[10] American National Standard Institute (ANSI)/American Society of Mechanical Engineers (ASME). Manual for determining strength of corroded pipelines, ASME B31G; 1984.
[11] Kiefner J, Vieth P. “A modified criterion for evaluating the strength of corroded pipe.” Final report for PR 3-805 project to the Pipeline Supervisory Committee of the American Gas Association, Battelle, Ohio; (1989).
[12] Recommended Practice, Det Norske Veritas, DNVRP- F101, Corroded Pipelines, (2004).
[13] Choi J. B , Goo B. K, Kim J. C , Kim Y. J , Kim W. S. “Development of limit load solutions for corroded gas pipelines.” International Journal of Pressure Vessel and Piping, 80 (2):121–128, (2003).
[14] Pluvinage G. “Notch effects in fatigue and Fracture.” Editeur Kluwer, (2001).
[15] H. Elminor, A. Kifani, Z. Azari, M. Louah, G. Pluvinage. “Fracture toughness of Strength Steel-Using the notch stress factor and volumetric approach.” Structural Safety, Elsevier sciences, (2002).
[16] Larsson S.G and Carlsson A. J. “Influence of nonsingular stress terms and specimen geometry on smallscale yielding at crack tips in elastic–plastic materials.” J Mech Phys Solids, 1, Vol (21): 263–77, (1973).
[17] Yang. B, Ravichandar. K. “Evaluation of T stress by stress difference method.” Engng Fract Mech,; Vol 64:589–605, (2001).
[18] Hadj Meliani M, MatvienkoY. G, Pluvinage G. “Twoparameter fracture criterion (Kρ,c -Tef,c) based on notch fracture mechanics.” Inter. Journal of Fracture Vol 167: 173–182, (2011).
[19] O. Bouledroua1, M. Hadj Meliani and G. Pluvinage. “Assessment of pipe defects using a constraint modified failure assessment diagram.” Journal of Failure Analysis and Prevention, Volume 17, Issue 1, pp 144–153 February, (2017).
[20] Eiber RJ. “The effect of dents on the failure characteristics of linepipe”, Batelle Colombus Laboratories, NG 18, Report no. 125; May,( 1981).
[21] Jones DG. “The significance of mechanical damage in pipelines.” 3R International, 21, Jahrgang, Heft; (1982).
[22] 7th Report of European Gas Pipeline Incident Data Group, 1970–2007, Gas pipeline Incidents:1–33 –December (2008).
[23] M. Oyane, T.Sato, K. Okimoto, S. Shima. “Criteria for ductile fracture and their application.” J. Mech. Work technol. 4, (1980).
[24] J. Capelle, J. Gilgert, G. Pluvinage. “A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption.” International Journal of Hydrogen Energy, Volume 35, Issue 2, January: 833– 843, (2010).
[25] J. Capelle, J. Predan, N. Gubeljak, G. Pluvinage. “The use of cyclic as a parameter for fatigue initiation of X52 steel Engineering Fracture Mechanics.” Volume 96:82–95, (2012).
[26] S Jallouf , J. Capelle and G Pluvinage “Probabilistic fatigue initiation assessment diagram for pipe steel X 52: influence of hydrogen.” Fatigue & Fracture of Engineering Materials & Structures, Volume 40, Issue 8:1260–1266, (2017).
[27] ASME B31.1 Power piping ,(2016).
[28] Arrêté du 4 aout 2006 portant sur le règlement de la sécurité des canalisations de transport de gaz combustibles, d’hydrocarbures liquides ou liquéfiés et de produits chimiques. Fr J Officiel (2006).
[29] GESIP, Rapport n°2008/01. “Guide Méthodologique pour la réalisation d’une étude de sécurité concernant une canalisation de transport (hydrocarbures liquides ou liquéfiés, gaz combustibles et produits chimiques).” décembre (2008).
[30] G. Pluvinage et V.Sapounov. “Prévision statistique du comportement des matériaux.” Editeur CEPADUES, (2006).
[31] Feddersen C.E “Evaluation and prediction of residual strength of center cracked tension panels.” ASTM STP 486: 50-62, (1970).
[32] ASME B31G-2009: Manual for Determining the Remaining Strength of Corroded Pipelines[S]. American Society of Mechanical Engineers, New York, (2009).
[33] H.J Cialone and JH. Holbrook. “Effects of gaseous hydrogen on fatigue crack growth in pipeline steel.” Metallurgical Transactions A January, Volume 16, Issue 1: 115–122, (1985).
[34] L. Briottet , R. Batisse, G. de Dinechin, P. Langlois, L. Thiers. “Recommendations on X80 steel for the design of hydrogen gas transmission pipelines.” International Journal of Hydrogen Energy,37: 9423–9430, (2012).
Section
Original Work