Numerical method for identifying the flow model in the line pipe

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published May 31, 2020
Vladimir V. Zholobov

Abstract

With high availability of measuring tools and wide opportunities of modern computer technology, the existing methods of predictive estimations of hydraulic parameters for the fluids’ pipeline transport seem to be too approximate. Due to this, it is relevant to adapt the most accurate relationships available in the scientific and technical literature to real conditions. Based on the review of analytical solutions for calculating friction losses in the pressure lines, the structure of relationships most accurately reflecting the experimental data of I. Nikuradze is determined, where the hydraulic drag coefficient ? is described by the piecewise-continuous relations, given by O. M. Ayvazyan. The hydraulic drag coefficient structural relationship shall be selected with the highest capability to summarize the experimental data available in the scientific and technical literature. Using the pressure measurement data, free parameters included in the selected relationship for the hydraulic drag coefficient shall be identified. The numerical computation algorithm is proposed that enables to recover the values of parameters in the structural relationship of hydraulic drag coefficient ? through multiple application of the well-known method of sensitivity functions and pressure measurement data in the line pipe. The procedure is described for generating the computing system of ordinary differential equations that enables for every fixed set of experimental data (pressure and flow rate) to determine (or correct, if necessary) the corresponding parameters in the unified structural relationship for hydraulic drag coefficient ?. The feature of the proposed algorithm is the absence of embedded cycles. Dynamic control of variable parameters in the hydraulic drag coefficient ? based upon the proposed approach enables to improve the predictive estimations accuracy of flow parameters while pumping fluids and to acquire additional data on the state of the fluids filling the inner pipeline space.

How to Cite

1.
Zholobov VV. Numerical method for identifying the flow model in the line pipe. PST [Internet]. 2020May31 [cited 2020Oct.31];4(2(4):138-4. Available from: https://pipeline-science.com/index.php/PST/article/view/127

Downloads

Download data is not yet available.
Abstract 50 | PDF file Downloads 15

##plugins.themes.bootstrap3.article.details##

Keywords

Hydraulic drag coefficient, sensitivity function, root-mean-square deviation, minimizing the functional.

References
[1] Loytsyansky L. G. Liquid and gas mechanics. Moscow: Nauka Publ.; 1970. p 904. (In Russ.)
[2] Reynolds O. The dynamical theory of incompressible viscous fluids and the determination of the criterion. In: Problem of turbulence. Moscow – Leningrad: ONTI NKTP Publ.; 1936. p 185–227. (In Russ.)
[3] Prandtl L. Aerohydromechanics. Izhevsk: Regulyarnaya i Khaoticheskaya Dinamika Publ.; 2002. 572 p. (In Russ.)
[4] Nikuradse I. Regularity of turbulent flow in smooth pipes. In: Problem of turbulence. Moscow– Leningrad: ONTI NKTP SSSR Publ.; 1936. pp 75–150. (In Russ.)
[5] Nikuradse J. Stromungsgesetze in rauchen Rohren. Forschung auf dem Gebiete des Ingenieurwesens. 1933(391). pp 1–22. (In Germ.)
[6] Goncharov V. N. Uniform turbulent flow. Moscow – Leningrad: Gosenergoizdat; 1952. p 145. (In Russ.)
[7] Grishanin ?. V. Dynamics of channel flows. Leningrad: Gidrometeoizdat; 1979. p 312. (In Russ.)
[8] Ayvazyan ?. ?. Fundamentals of hydraulics in the uniform flows. Moscow: Institute of Computer Researches Publ.; Izhevsk: Regulyarnaya i Khaoticheskaya Dinamika Publ.; 2006. p 152. (In Russ.)
[9] Millikan C. B. A critical discussion of the turbulent flows in channels and circular tubes. Proceedings of the 5th Int. Congress for Applied Mechanics. Cambridge (Massachusetts, USA), September 12– 26, 1938. p 386–392. (In Russ.)
[10] Khintse I. ?. Turbulence, its mechanism and theory. Moscow: Fizmatgiz Publ.; 1963. p 680. (In Russ.)
[11] Satkevich ?. ?. The theoretical basics of fluid dynamics. Part 2: Dynamics of liquid bodies. Moscow – Leningrad: ONTI NKTP SSSR Publ.; 1934. p 467. (In Russ.)
[12] Prandtl L. Neuere Ergebnisse der Turbulenzforschung. Zeitschrift des Vereines Deutscher Ingenieure. 1933(77). p 105–114. (In Germ.)
[13] Coles D. The law of the wake in turbulent boundary layers. J. Fluid. Mech. 1956;1(2). p 191–226.
[14] Clauzer F. H. The turbulent boundary layer. Advances Appl. Mech. 1956; 4. p 1–51.
[15] Zanoun E.-S., Durst F., Nagib H. Scaling laws for turbulent channel and pipe flows over a wide range of Reynolds numbers. Proc. of the 4th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics. Cairo, Egypt, September 19–22, 2005. Paper No. ZF2.
[16] Bryanskaya Y. V. Flow in a wall-bound layer and beyond it (in pipe, channel, and boundary layer). Vestnik MGSU. 2010 (2–4). p 60–65. (In Russ.)
[17] Borovkov V. S., Volshanik V. V., Rylova I. ?. Features of velocity distribution in a turbulent flow. Vestnik MGSU. 2015 (6). p 103–109. (In Russ.)
[18] Barenblatt G. I., Prostokishin V. M. Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. Journal Fluid Mech. 1993 (248). p 521–529.
[19] Barenblatt G. I., Chorin A. J., Prostokishin V. M. Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers. Journal Fluid Mech. 2000 (410). p 263–283.
[20] Vysotsky L. I. A brief review of achievements in solving the problem of distribution of averaged velocities in canonical fluid flows. Nauchnoe obozrenie. Tekhnicheskie nauki = Scientific Review. Engineering Sciences. 2017 (1). p 36–58 [accessed Feb. 11, 2019]. https://science-engineering.ru/ru/article/view?id=1142. (In Russ.)
[21] Buschmann M. H., Gad-el-Hak M. Turbulent boundary layers: reality and myth. Int. Journal of Computing Science and Mathematics. 2007; 1 (2–4). p 159–176.
[22] Knopp T., Schanz D., Schröder A., Dumitra M., Cierpka C., Hain R., Kähler C. J. Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at Re?=10000. Flow, Turbulence and Combustion. 2014 (92). p 451–471.
[23] George W. K. Is there a universal log law for turbulent wall-bounded flows? Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences. 2007 (365). p 789–806.
[24] Baykov V. N. Universal velocity distribution in water flows under various hydraulic drag modes. Vestnik MGSU. 2009 (4). p 19–22. (In Russ.)
[25] Bryanskaya Y. V. Refinement of turbulent flow velocity characteristics. Inzhenerno-stroitelny zhurnal = Construction Engineering Journal. 2013 (6). p 31–38. (In Russ.)
[26] Lobanov I. ?. Theory of hydraulic drag in straight round pipes with rough walls. Otraslevye aspekty tekhnicheskikh nauk = Industry-specific Aspects of Engineering Sciences. 2012 (4). p 4–13. (In Russ.)
[27] Yanyshev D. S. Application of the Lambert function in the theory of turbulent friction. Trudy MAI: electronic journal. 2015. Issue 50. http://trudymai.ru/ upload/iblock/98a/primenenie-funktsii-lamberta-vteorii-turbulentnogo-treniya.pdf?lang=ru&issue=50 (In Russ.)
[28] Kondratyev A. S., Nha T. L., Shvydko P. P. The Colebrook–White general formula in pipe flow for arbitrary sand roughness of pipe wall. Fundamentalnye issledovaniya = Fundamental Research. 2017 (1). p 74–78 [accessed Feb. 07, 2019]. http://www.fundamental-research.ru/ru/article/view?id=41318. (In Russ.)
[29] Kondratyev A. S., Nha T. L., Shvydko P. P. Engineering method of calculating hydraulic drag coefficient and velocity profile for an arbitrary sand roughness of the pipe wall. Gidravlika = Hydraulics: electronic scientific journal. 2016. Issue 2 [accessed Feb. 07, 2019]. http://hydrojournal.ru/images/JOURNAL/NUMBER2/Kondratiev.pdf (In Russ.)
[30] Mingalev I. V., Mingalev O. V., Mingalev V. S. Generalized Newtonian rheological model for laminar and turbulent flows. Matematicheskoe modelirovanie = Mathematical Modeling. 1999; 11(11). p 39–63. (In Russ.)
[31] Wilcox D. C. Turbulence Modeling for CFD. La Canada (??): DWC Industries Inc.; 1998. 540 p.
[32] Pavlovsky V. ?. On one phenomenological alternative to the hypothesis of the mixing pathlength. In: Models of continuum mechanics: collection. Physical mechanics. Issue 7. B. V. Filippov, editor. Saint Petersburg: Publ. House of St Petersburg University; 1998. p 21–35. (In Russ.)
[33] Chistov A.L. Unified laminar turbulent differential model of incompressible viscous liquid flows. Vestnik of Saint Petersburg University. Series 10. 2008 (4). p 103–106. (In Russ.)
[34] Pavlovsky V. ?. Various forms of transformations of the Navier – Stokes equations. Problems of saving fuel and energy resources at industrial enterprises
and thermal power plants: interuniversity collection of scientific papers. Saint Petersburg: SPbGTURP Publ.; 2007. p 5–11. (In Russ.)
[35] Pavlovsky V. ?. On the calculation of pulsation characteristics of turbulent flows. Journal of applied mechanics and technical physics. 1988 (3). p 114–122. (In Russ.)
[36] Pavlovsky V. ?. Applications of the unified phenomenological laminar and turbulent model for the calculation of non-isothermal liquid flows in pipes. Proc. of the Scientific and Technical Conference “The Shipbuilding Education and Science”. Saint Petersburg: SPbGMTU; 2003. p 33–37. (In Russ.)
[37] Pavlovsky V. ?., Shestov ?. V. Application of turbulence f-model for calculation of internal tasks of hydrodynamics and heat and mass transfer. Proc. of the Third All-Russian intersectoral scientific andtechnical conference “Actual Problems of Marine Power Engineering”. Saint Petersburg: Publ. House of SPbMTU; 2014. p 181. (In Russ.)
[38] Dupuit J. Traite theorique et pratique de la conduite et de la distribution des eaux. Paris: Carilian-Goeury et Dalmont, 1854. (In French.)
[39] Darcy H. Recherches experimentales relatives au mouvement de l’eau dans les tuyaux. Paris: Mallet- Bachelier, 1857. p 268. (In French.)
[40] Darcy H. P. G., Bazin H. Recherches Hydrauliques. 1ère et 2ème parties. Paris: Imprimerie Impériales, 1865. (In French.)
[41] Du Buat P. L. G. Principes d'hydraulique et de pyrodynamique. 3e édition révisée en 3 vol. Paris: Firmin Didot, 1816. (In French.)
[42] Bakhmetev B. ?. On the uniform liquid motion in channels and pipes. Leningrad: Kubuch Publ.; 1929. p 244. (In Russ.)
[43] Biel R. Über den Druckhöhenverlust bei der Fortleitung tropfbarer und gasförmiger Flüssigkeiten. Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Heft 44. Berlin: Springer Verlag, 1907. (In Germ.)
[44] Idelchik I. ?. Handbook of hydraulic drags. By ed. ?. ?. Shteinberg. 3rd ed., revised and enlarged. Moscow: Mashinostroenie Publ.; 1992. p 672. (In Russ.)
[45] Chernikin ?. V. Generalized formula for hydraulic drag coefficient of pipelines. Transport i khranenie nefteproduktov. Transportation and Storage of Oil Products. 1997 (4–5). p 20–22. (In Russ.)
[46] Chernikin V. ?., Chernikin ?. V. Generalized formula for calculating the hydraulic drag coefficient of pipelines for light petroleum products and lowviscous oils. Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov – Science & Technologies of Oil and Petroleum Products Pipeline Transportation. 2012 (4). p 64–66. (In Russ.)
[47] Chernikin ?. V. On hydraulic calculation of pipelines according to L. S. Leibenzon’s formula. Neftyanoe khozyajstvo = Oil Industry. 1996 (4). p 65–66 (In Russ.)
[48] Chernikin ?. V. On determination of pressure losses in pipelines by the generalized formula. Nauka i tekhnologiya uglevodorodov = Hydrocarbon Science and Technology. 1999 (4). p 13–15 (In Russ.)
[49] Morozova N. V., Korshak ?. ?. Pipeline hydraulic calculations and border Reynolds numbers. Neftegazovoe delo = Oil and Gas Business. 2007; 5(1). p 120–125. (In Russ.)
[50] Chernikin ?. V., Talipov R. F. On application of Colebrook equation at pipelines hydraulic calculation using the generalized formula. Truboprovodnyi transport: teoriya i praktika = Pipeline Transport: Theory and Practice. 2010 (4). p 14–16. (In Russ.)
[51] Seleznev V. E., Aleshin V. V., Pryalov S. N. Mathematical modeling of pipeline networks and channel systems: methods, models and algorithms. Ed. Seleznev V. E. , Moscow: MAKS Press; 2007. p 695. (In Russ.)
[52] Voevodin ?. F., Nikiforovskaya V. S. Numerical method for solving some inverse problems of hydraulics. Vodnye resursy = Water Resources. 1981 (3). p 114–118. (In Russ.)
[53] Bondar D. V., Zholobov V. V., Varybok D. I., Nadezhkin O. S. On testing the leak detecting algorithms based on the sensitivity functions. Network publication Neftegazovoe delo = Oil and Gas Business: online media. 2018 (4). p 194–233 [accessed Feb. 21, 2019]. http://ogbus.ru/files/ogbus/issues/4_2018/ogbus_4_2018_p194-233_BondarDV_ru.pdf (In Russ.)
Section
Original Work